Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559013

RESUMO

Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease (LSD) characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplant (HSCT) with lentiviral (LV) based gene therapy has great potential to treat MLD. However, if enzyme production is inadequate, this could result in continued loss of motor function, implying a high vector copy number (VCN) requirement for optimal enzymatic output. This may place children at increased risk for genomic toxicity due to higher VCN. We increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression, and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human HSC with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4X more ARSA activity than the currently EU-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa -KO MLD mice transplanted with Arsa -KO BM cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching WT mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating early symptomatic MLD patients.

2.
Cytotherapy ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613540

RESUMO

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.

3.
Mol Genet Metab ; 142(1): 108453, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38522179

RESUMO

Growing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases. Delays in diagnosis and overall rarity limit the timely collection of natural history data. When feasible, prospective studies are often cross-sectional rather than longitudinal and are unlikely to capture pre- or early- symptomatic disease trajectories, limiting their utility in characterizing the full natural history of the disease. Therapeutic development in leukodystrophies is subject to these same obstacles. The Global Leukodystrophy Initiative Clinical Trials Network (GLIA-CTN) comprises of a network of research institutions across the United States, supported by a multi-center biorepository protocol, to map the longitudinal clinical course of disease across leukodystrophies. As part of GLIA-CTN, we developed Standard Operating Procedures (SOPs) that delineated all study processes related to staff training, source documentation, and data sharing. Additionally, the SOP detailed the standardized approach to data extraction including diagnosis, clinical presentation, and medical events, such as age at gastrostomy tube placement. The key variables for extraction were selected through face validity, and common electronic case report forms (eCRF) across leukodystrophies were created to collect analyzable data. To enhance the depth of the data, clinical notes are extracted into "original" and "imputed" encounters, with imputed encounter referring to a historic event (e.g., loss of ambulation 3 months prior). Retrospective Functional Assessments were assigned by child neurologists, using a blinded dual-rater approach and score discrepancies were adjudicated by a third rater. Upon completion of extraction, data source verification is performed. Data missingness was evaluated using statistics. The proposed methodology will enable us to leverage existing medical records to address the persistent gap in natural history data within this unique disease group, allow for assessment of clinical trajectory both pre- and post-formal diagnosis, and promote recruitment of larger cohorts.

4.
J Child Neurol ; : 8830738241241786, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532733

RESUMO

Aicardi-Goutières syndrome is a genetic inflammatory disorder resulting in dispersed neurologic dysfunction. Despite a recognition of overall motor impairment, fine and visual motor skills are undercharacterized. We hypothesize that there is a spectrum of fine and visual motor skills in the Aicardi-Goutières syndrome population as captured by a standard outcome measure, the Peabody Developmental Motor Scales (PDMS-2), which will be proportional to overall disease severity.In a cohort of 74 subjects, the Peabody Developmental Motor Scales-2 grasping and visual-motor integration subtests were administered concurrently with the Aicardi-Goutières syndrome Severity Scale (severe [range 0-3], moderate [range 4-8], and attenuated [range 9-11]). The cohort was also compared by genotype and performance as defined by raw scores. The distribution of Peabody Developmental Motor Scales-2 scores within a genotype was assessed by interquartile ranges (IQRs).Peabody Developmental Motor Scales-2 grasping and visual-motor integration performance was the least variable in the TREX1-cohort (IQR: 10.00-12.00) versus the SAMHD1 and IFIH1 cohorts (IQR: 51.00-132.00 and 48.50-134.00, respectively). Neurologic severity highly correlated with both fine and visual motor skills (Spearman correlation: r = 0.87, 0.91, respectively). A floor effect (lowest 10% of possible scores) was observed within the severe cohort (n = 32/35), whereas a ceiling effect (top 10%) was observed in the attenuated cohort (n = 13/17).This study characterized the spectrum of fine and visual motor function in the Aicardi-Goutières syndrome population, which correlated with overall neurologic dysfunction. The Peabody Developmental Motor Scales-2 grasping and visual-motor integration showed promise as potential assessment tools in moderate and attenuated Aicardi-Goutières syndrome cohorts. A better understanding of fine and visual motor function in this population will benefit clinical care and clinical trial design.

5.
J Inherit Metab Dis ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421058

RESUMO

The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.

6.
Mol Genet Metab ; 142(1): 108346, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38368708

RESUMO

OBJECTIVE: Aicardi Goutières Syndrome (AGS) is a genetic interferonopathy associated with multisystemic heterogeneous disease and neurologic dysfunction. AGS includes a broad phenotypic spectrum which is only partially explained by genotype. To better characterize this variability, we will perform a systematic analysis of phenotypic variability in familial cases of AGS. METHODS: Among thirteen families, twenty-six siblings diagnosed with AGS were identified from the Myelin Disorders and Biorepository Project (MDBP) at the Children's Hospital of Philadelphia. Data were collected on the age of onset, genotype, neurologic impairment, and systemic complications. Neurologic impairment was assessed by a disease-specific scale (AGS Severity Scale) at the last available clinical encounter (range: 0-11 representing severe - attenuated phenotypes). The concordance of clinical severity within sibling pairs was categorized based on the difference in AGS Scale (discordant defined as >2-unit difference). The severity classifications were compared between sibling sets and by genotype. RESULTS: Five genotypes were represented: TREX1 (n = 4 subjects), RNASEH2B (n = 8), SAMHD1 (n = 8) ADAR1 (n = 4), and IFIH1 (n = 2). The older sibling was diagnosed later relative to the younger affected sibling (median age 7.32 years [IQR = 14.1] compared to 1.54 years [IQR = 10.3]). Common presenting neurologic symptoms were tone abnormalities (n = 10/26) and gross motor dysfunction (n = 9/26). Common early systemic complications included dysphagia and chilblains. The overall cohort median AGS severity score at the last encounter was 8, while subjects presenting with symptoms before one year had a median score of 5. The TREX1 cohort presented at the youngest age and with the most severe phenotype on average. AGS scores were discordant for 5 of 13 sibling pairs, most commonly in the SAMHD1 pairs. Microcephaly, feeding tube placement, seizures and earlier onset sibling were associated with lower AGS scores (respectively, Wilcoxon rank sum: p = 0.0001, p < 0.0001, p = 0.0426, and Wilcoxon signed rank: p = 0.0239). CONCLUSIONS: In this systematic analysis of phenotypic variability in familial cases, we found discordance between siblings affected by AGS. Our results underscore the heterogeneity of AGS and suggest factors beyond AGS genotype may affect phenotype. Understanding the critical variables associated with disease onset and severity can guide future therapeutic interventions and clinical monitoring. This report reinforces the need for further studies to uncover potential factors to better understand this phenotypic variability, and consequently identify potential targets for interventions in attempt to change the natural history of the disease.

7.
Stem Cell Res ; 74: 103299, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181636

RESUMO

Mutations in Adenosine deaminase acting on RNA 1 (ADAR1) gene encoding RNA editing enzyme ADAR1 results in the neuroinflammatory leukodystrophy Aicardi Goutières Syndrome (AGS). AGS is an early onset leukoencephalopathy with an exacerbated interferon response leading to neurological regression with intellectual disability, spasticity, and motor deficits. We have generated three induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells (PBMCs) of individuals with ADAR1G1007R mutation. The generated iPSCs were investigated to confirm a normal karyotype, pluripotency, and trilineage differentiation potential. The reprogrammed iPSCs will allow us to model AGS, dissect the cellular mechanisms and testing different treatment targets.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Células-Tronco Pluripotentes Induzidas , Malformações do Sistema Nervoso , Humanos , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia
8.
NPJ Genom Med ; 9(1): 5, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212313

RESUMO

Kagami-Ogata syndrome is a rare imprinting disorder and its phenotypic overlap with multiple different etiologies hampers diagnosis. Genetic etiologies include paternal uniparental isodisomy (upd(14)pat), maternal allele deletions of differentially methylated regions (DMR) in 14q32.2 or pure primary epimutations. We report a patient with Kagami-Ogata syndrome and an atypical diagnostic odyssey with several negative standard-of-care genetic tests followed by epigenetic testing using methylation microarray and a targeted analysis of whole-genome sequencing to reveal a 203 bp deletion involving the MEG3 transcript and MEG3:TSS-DMR. Long-read sequencing enabled the simultaneous detection of the deletion, phasing, and biallelic hypermethylation of the MEG3:TSS-DMR region in a single assay. This case highlights the challenges in the sequential genetic testing paradigm, the utility of long-read sequencing as a single comprehensive diagnostic assay, and the smallest reported deletion causing Kagami-Ogata syndrome allowing important insights into the mechanism of imprinting effects at this locus.

9.
Pediatr Dermatol ; 41(1): 156-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37770123

RESUMO

A 6-year-old female with a history of Aicardi-Goutières syndrome (AGS) presented to dermatology clinic with hypopigmented and hyperpigmented macules and patches consistent with dyschromatosis symmetrica hereditaria (DSH). Previous genetic workup demonstrated a de novo, heterozygous mutation in the adenosine deaminase acting on RNA 1 (ADAR) gene. While the co-occurrence of AGS and DSH has previously been described in mutations of the ADAR gene, our case highlights the potential association between these disorders that may aid in earlier future diagnosis of AGS.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Hiperpigmentação , Malformações do Sistema Nervoso , Transtornos da Pigmentação/congênito , Feminino , Humanos , Criança , Mutação , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Adenosina Desaminase/genética , Linhagem
10.
J Inherit Metab Dis ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870986

RESUMO

Sulfatases catalyze essential cellular reactions, including degradation of glycosaminoglycans (GAGs). All sulfatases are post-translationally activated by the formylglycine generating enzyme (FGE) which is deficient in multiple sulfatase deficiency (MSD), a neurodegenerative lysosomal storage disease. Historically, patients were presumed to be deficient of all sulfatase activities; however, a more nuanced relationship is emerging. Each sulfatase may differ in their degree of post-translational modification by FGE, which may influence the phenotypic spectrum of MSD. Here, we evaluate if residual sulfatase activity and accumulating GAG patterns distinguish cases from controls and stratify clinical severity groups in MSD. We quantify sulfatase activities and GAG accumulation using three complementary methods in MSD participants. Sulfatases differed greatly in their tolerance of reduction in FGE-mediated activation. Enzymes that degrade heparan sulfate (HS) demonstrated lower residual activities than those that act on other GAGs. Similarly, HS-derived urinary GAG subspecies preferentially accumulated, distinguished cases from controls, and correlated with disease severity. Accumulation patterns of specific sulfatase substrates in MSD provide fundamental insights into sulfatase regulation and will serve as much-needed biomakers for upcoming clinical trials. This work highlights that biomarker investigation of an ultra-rare disease can simultaneously inform our understanding of fundamental biology and advance clinical trial readiness efforts.

11.
BMC Neurol ; 23(1): 305, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592248

RESUMO

BACKGROUND: The leukodystrophy "Vanishing White Matter" (VWM) is an orphan disease with neurological decline and high mortality. Currently, VWM has no approved treatments, but advances in understanding pathophysiology have led to identification of promising therapies. Several investigational medicinal products are either in or about to enter clinical trial phase. Clinical trials in VWM pose serious challenges, as VWM has an episodic disease course; disease phenotype is highly heterogeneous and predictable only for early onset; and study power is limited by the small patient numbers. To address these challenges and accelerate therapy delivery, the VWM Consortium, a group of academic clinicians with expertise in VWM, decided to develop a core protocol to function as a template for trials, to improve trial design and facilitate sharing of control data, while permitting flexibility regarding other trial details. Overall aims of the core protocol are to collect safety, tolerability, and efficacy data for treatment assessment and marketing authorization. METHODS: To develop the core protocol, the VWM Consortium designated a committee, including clinician members of the VWM Consortium, family and patient group advocates, and experts in statistics, clinical trial design and alliancing with industries. We drafted three age-specific protocols, to stratify into more homogeneous patient groups, of ages ≥ 18 years, ≥ 6 to < 18 years and < 6 years. We chose double-blind, randomized, placebo-controlled design for patients aged ≥ 6 years; and open-label non-randomized natural-history-controlled design for patients < 6 years. The protocol describes study populations, age-specific endpoints, inclusion and exclusion criteria, study schedules, sample size determinations, and statistical considerations. DISCUSSION: The core protocol provides a shared uniformity across trials, enables a pool of shared controls, and reduces the total number of patients necessary per trial, limiting the number of patients on placebo. All VWM clinical trials are suggested to adhere to the core protocol. Other trial components such as choice of primary outcome, pharmacokinetics, pharmacodynamics, and biomarkers are flexible and unconstrained by the core protocol. Each sponsor is responsible for their trial execution, while the control data are handled by a shared research organization. This core protocol benefits the efficiency of parallel and consecutive trials in VWM, and we hope accelerates time to availability of treatments for VWM. TRIAL REGISTRATION: NA. From a scientific and ethical perspective, it is strongly recommended that all interventional trials using this core protocol are registered in a clinical trial register.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Substância Branca , Humanos , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Consenso , Defesa do Paciente , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Tamanho da Amostra , Pré-Escolar , Criança , Adolescente , Adulto
12.
J Child Neurol ; 38(8-9): 498-504, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461315

RESUMO

TUBB4A pathogenic variants are associated with a spectrum of neurologic impairments including movement disorders and leukodystrophy. With the development of targeted therapies, there is an urgent unmet need for validated tools to measure mobility impairment. Our aim is to explore gross motor function in a pediatric-onset TUBB4A-related leukodystrophy cohort with existing gross motor outcome tools. Gross Motor Function Measure-88 (GMFM-88), Gross Motor Function Classification System (GMFCS-ER), and Gross Motor Function Classification-Metachromatic Leukodystrophy (GMFC-MLD) were selected through face validity. Subjects with a confirmed clinical and molecular diagnosis of TUBB4A-related leukodystrophy were enrolled. Participants' sex, age, genotype, and age at disease onset were collected, together with GMFM-88 and concurrent GMFCS-ER and GMFC-MLD. Performances on each measure were compared. GMFM-88 floor effect was defined as total score below 20%. A total of 35 subjects participated. Median performance by GMFM-88 was 16.24% (range 0-97.31), with 42.9% (n = 15) of individuals performing above the floor. GMFM-88 Dimension A (Lying and Rolling) was the best-performing dimension in the GMFM-88 (n = 29 above the floor). All levels of the Classification Scales were represented, with the exception of the GMFC-MLD level 0. Evaluation by GMFM-88 was strongly correlated with the Classification Scales (Spearman correlations: GMFCS-ER:GMFM-88 r = 0.90; GMFC-MLD:GMFM-88 r = 0.88; GMFCS-ER:GMFC-MLD: r = 0.92). Despite overall observation of a floor effect, the GMFM-88 is able to accurately capture the performance of individuals with attenuated phenotypes. GMFM-88 Dimension A shows no floor effect. GMFC-MLD shows a strong correlation with GMFCS-ER and GMFM-88, supporting its use as an age-independent functional score in TUBB4A-related leukodystrophy.


Assuntos
Paralisia Cerebral , Leucodistrofia Metacromática , Transtornos dos Movimentos , Humanos , Leucodistrofia Metacromática/complicações , Transtornos dos Movimentos/complicações , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Destreza Motora , Tubulina (Proteína)/genética
13.
J Child Neurol ; 38(8-9): 518-527, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499181

RESUMO

Background: Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterized by a spectrum of motor abilities. While the Aicardi-Goutières syndrome severity score favors severely impacted individuals, there is an unmet need to define tools measuring function across the Aicardi-Goutières syndrome spectrum as potential outcome assessments for future clinical trials. Methods: Gross Motor Function Measure-88 (GMFM-88) and AGS Severity Scale were administered in individuals affected by Aicardi-Goutières syndrome (n = 71). We characterized the performance variability by genotype. Derived versions of the GMFM-88, including the GMFM-66, GMFM-66 item set (GMFM-66IS), and GMFM-66 Basal&Ceiling (GMFM-66BC) were calculated. The Aicardi-Goutières syndrome cohort was divided into severe (AGS Severity Scale score <4) or attenuated (≥4). Performance on the AGS Severity Scale highly correlated with total GMFM-88 scores (Spearman Correlation: R = 0.91). To assess variability of the GMFM-88 within genotypic subcohorts, interquartile ranges (IQRs) were compared. Results: GMFM-88 performance in the TREX1 cohort had least variability while the SAMHD1 cohort had the largest IQR (4.23 vs 81.8). Floor effect was prominent, with most evaluations scoring below 20% (n = 46, 64.79%), particularly in TREX1- and RNASEH2-cohorts. Performance by the GMFM-66, GMFM-66IS, and GMFM-66BC highly correlated with the full GMFM-88. The Aicardi-Goutières syndrome population represents a broad range of gross motor skills. Conclusions: This work identified the GMFM-88 as a potential clinical outcome assessment in subsets of the Aicardi-Goutières syndrome population but underscores the need for additional validation of outcome measures reflective of the diverse gross motor function observed in this population, including low motor function. When time is limited by resources or patient endurance, shorter versions of the GMFM-88 may be a reasonable alternative.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Malformações do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/genética , Genótipo , Mutação
14.
Brain ; 146(10): 4306-4319, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37453099

RESUMO

Patients with herpes simplex virus (HSV) encephalitis (HSE) often develop neuronal autoantibody-associated encephalitis (AE) post-infection. Risk factors of AE are unknown. We tested the hypotheses that predisposition for AE post-HSE may be involved, including genetic variants at specific loci, human leucocyte (HLA) haplotypes, or the blood innate immune response against HSV, including type I interferon (IFN) immunity. Patients of all ages with HSE diagnosed between 1 January 2014 and 31 December 2021 were included in one of two cohorts depending on whether the recruitment was at HSE onset (Spanish Cohort A) or by the time of new neurological manifestations (international Cohort B). Patients were assessed for the type of neurological syndromes; HLA haplotypes; blood type I-IFN signature [RNA quantification of 6 or 28 IFN-response genes (IRG)] and toll-like receptor (TLR3)-type I IFN-related gene mutations. Overall, 190 patients (52% male) were recruited, 93 in Cohort A and 97 in Cohort B. Thirty-nine (42%) patients from Cohort A developed neuronal autoantibodies, and 21 (54%) of them developed AE. Three syndromes (choreoathetosis, anti-NMDAR-like encephalitis and behavioural-psychiatric) showed a high (≥95% cases) association with neuronal autoantibodies. Patients who developed AE post-HSE were less likely to carry the allele HLA-A*02 (4/21, 19%) than those who did not develop AE (42/65, 65%, P = 0.0003) or the Spanish general population (2005/4335, 46%, P = 0.0145). Blood IFN signatures using 6 or 28 IRG were positive in 19/21 (91%) and 18/21 (86%) patients at HSE onset, and rapidly decreased during follow-up. At Day 21 after HSE onset, patients who later developed AE had higher median IFN signature compared with those who did not develop AE [median Zs-6-IRG 1.4 (0.6; 2.0) versus 0.2 (-0.4; 0.8), P = 0.03]. However, a very high median Zs-6-IRG (>4) or persistently increased IFN signature associated with uncontrolled viral infection. Whole exome sequencing showed that the percentage of TLR3-IFN-related mutations in patients who developed AE was not different from those who did not develop AE [3/37 (8%) versus 2/57 (4%), P = 0.379]. Multivariate logistic regression showed that a moderate increase of the blood IFN signature at Day 21 (median Zs-6-IRG >1.5 but <4) was the most important predictor of AE post-HSE [odds ratio 34.8, interquartile ratio (1.7-691.9)]. Altogether, these findings show that most AE post-HSE manifest with three distinct syndromes, and HLA-A*02, but not TLR3-IFN-related mutations, confer protection from developing AE. In addition to neuronal autoantibodies, the blood IFN signature in the context of HSE may be potentially useful for the diagnosis and monitoring of HSE complications.


Assuntos
Encefalite por Herpes Simples , Interferon Tipo I , Doenças do Sistema Nervoso , Humanos , Masculino , Feminino , Encefalite por Herpes Simples/complicações , Encefalite por Herpes Simples/genética , Receptor 3 Toll-Like/genética , Autoanticorpos , Antígenos HLA-A
15.
Ann Clin Transl Neurol ; 10(7): 1146-1159, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212343

RESUMO

OBJECTIVE: Metachromatic leukodystrophy is a lysosomal storage disease caused by deficient arylsulfatase A. It is characterized by progressive demyelination and thus mainly affects the white matter. Hematopoietic stem cell transplantation may stabilize and improve white matter damage, yet some patients deteriorate despite successfully treated leukodystrophy. We hypothesized that post-treatment decline in metachromatic leukodystrophy might be caused by gray matter pathology. METHODS: Three metachromatic leukodystrophy patients treated with hematopoietic stem cell transplantation with a progressive clinical course despite stable white matter pathology were clinically and radiologically analyzed. Longitudinal volumetric MRI was used to quantify atrophy. We also examined histopathology in three other patients deceased after treatment and compared them with six untreated patients. RESULTS: The three clinically progressive patients developed cognitive and motor deterioration after transplantation, despite stable mild white matter abnormalities on MRI. Volumetric MRI identified cerebral and thalamus atrophy in these patients, and cerebellar atrophy in two. Histopathology showed that in brain tissue of transplanted patients, arylsulfatase A expressing macrophages were clearly present in the white matter, but absent in the cortex. Arylsulfatase A expression within patient thalamic neurons was lower than in controls, the same was found in transplanted patients. INTERPRETATION: Neurological deterioration may occur after hematopoietic stem cell transplantation in metachromatic leukodystrophy despite successfully treated leukodystrophy. MRI shows gray matter atrophy, and histological data demonstrate absence of donor cells in gray matter structures. These findings point to a clinically relevant gray matter component of metachromatic leukodystrophy, which does not seem sufficiently affected by transplantation.


Assuntos
Doenças Desmielinizantes , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática , Doenças Neurodegenerativas , Humanos , Leucodistrofia Metacromática/terapia , Cerebrosídeo Sulfatase , Doenças Neurodegenerativas/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças Desmielinizantes/patologia
16.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37197783

RESUMO

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Humanos , RNA Polimerase III/genética , Padrões de Herança , RNA Polimerases Dirigidas por DNA/genética
17.
Stem Cell Res ; 69: 103083, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003180

RESUMO

Mutations in tubulin alpha 4a (TUBB4A) result in a spectrum of leukodystrophies, including Hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC), resulting from a recurring mutation p.Asp249Asn (TUBB4AD249N). H-ABC presents with dystonia, motor and cognitive impairment and pathological features of hypomyelination and loss of cerebellar and striatal neurons. We have generated three induced pluripotent stem cell (iPSC) lines from fibroblast and peripheral blood mononuclear cells (PBMCs) of individuals with TUBB4AD249N mutation. The iPSCs were assessed to confirm a normal karyotype, pluripotency, and trilineage differentiation potential. The iPSCs will allow for disease modeling, understanding mechanisms and testing of therapeutic targets.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Atrofia/patologia , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Cerebelo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação/genética , Fenótipo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
18.
Neurol Genet ; 9(6): e200101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38235040

RESUMO

Objectives: Acute reversible leukoencephalopathy with increased urinary alpha-ketoglutarate (ARLIAK) is a recently described autosomal recessive leukoencephalopathy caused by pathogenic variants in the SLC13A3 gene. ARLIAK is characterized by acute neurologic involvement, often precipitated by febrile illness, with largely reversible clinical symptoms and imaging findings. Three patients have been reported in the literature to date. Our objective is to report newly identified patients and their genetic variants and phenotypes and review published literature on ARLIAK. Methods: This report contributes 4 additional patients to the literature; describes novel variants in SLC13A3; and reviews genetic, biochemical, clinical, and radiologic features of all published patients with ARLIAK. Results: We provide additional genetic, imaging, and laboratory insights into ARLIAK, an atypical leukodystrophy with clinical and radiologic findings that can normalize. Discussion: Our case series highlights the importance of reanalysis of next-generation sequencing in the diagnostic workup.

19.
Curr Probl Pediatr Adolesc Health Care ; 52(12): 101311, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36470810

RESUMO

Leukodystrophies are defined as differences in normal myelin development and maintenance in the central nervous system. They typically present as white matter imaging abnormalities in young children with delayed developmental milestones. As the scientific community begins to better understand and research the mechanisms underlying leukodystrophies, clinical trials and approved therapies for specific disorders are becoming available. These interventions, ranging from repurposing of existing small molecules to recently approved gene therapies, are highly dependent on early diagnosis. It is essential for pediatricians to identify affected individuals promptly, but they face challenges including lack of awareness of the disorders and nonspecific symptom presentation (e.g., cognitive or motor developmental delay). This review provides five hypothetical clinical presentations and describes the disease mechanisms, typical symptoms, and treatments currently available for common leukodystrophies: Krabbe Disease, Aicardi Goutières Syndrome (AGS), Metachromatic leukodystrophy (MLD), Alexander Disease (AxD), Pelizaeus-Merzbacher Disease (PMD), and X-Linked Adrenoleukodystrophy (X-ALD.) This review educates pediatricians to recognize the presentation of leukodystrophies in affected children. These clinical vignettes can serve as a framework for pediatricians to identify potentially treatable rare disorders among their patients.


Assuntos
Adrenoleucodistrofia , Doenças Autoimunes do Sistema Nervoso , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Malformações do Sistema Nervoso , Criança , Humanos , Pré-Escolar , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética
20.
Eur J Paediatr Neurol ; 41: 71-79, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36368233

RESUMO

BACKGROUND: The clinical spectrum of Pelizaeus-Merzbacher disease (PMD), a common hypomyelinating leukodystrophy, ranges between severe neonatal onset and a relatively stable presentation with later onset and mainly lower limb spasticity. In view of emerging treatment options and in order to grade severity and progression, we developed a PMD myelination score. METHODS: Myelination was scored in 15 anatomic sites (items) on conventional T2-and T1w images in controls (n = 328) and 28 PMD patients (53 MRI; n = 5 connatal, n = 3 transitional, n = 10 classic, n = 3 intermediate, n = 2 PLP0, n = 3 SPG2, n = 2 female). Items included in the score were selected based on interrater variability, practicability of scoring and importance of scoring items for discrimination between patients and controls and between patient subgroups. Bicaudate ratio, maximal sagittal pons diameter, and visual assessment of midsagittal corpus callosum were separately recorded. RESULTS: The resulting myelination score consisting of 8 T2-and 5 T1-items differentiates patients and controls as well as patient subgroups at first MRI. There was very little myelin and early loss in severely affected connatal and transitional patients, more, though still severely deficient myelin in classic PMD, ongoing myelination during childhood in classic and intermediate PMD. Atrophy, present in 50% of patients, increased with age at imaging. CONCLUSIONS: The proposed myelination score allows stratification of PMD patients and standardized assessment of follow-up. Loss of myelin in severely affected and PLP0 patients and progressing myelination in classic and intermediate PMD must be considered when evaluating treatment efficacy.


Assuntos
Doença de Pelizaeus-Merzbacher , Recém-Nascido , Humanos , Feminino , Proteína Proteolipídica de Mielina/genética , Mutação , Imageamento por Ressonância Magnética , Corpo Caloso/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...